\(\int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [110]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 32 \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b} d} \]

[Out]

arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/d/a^(1/2)/b^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {3756, 211} \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b} d} \]

[In]

Int[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[b]*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3756

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{d} \\ & = \frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.00 \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b} d} \]

[In]

Integrate[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[b]*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(113\) vs. \(2(24)=48\).

Time = 3.20 (sec) , antiderivative size = 114, normalized size of antiderivative = 3.56

method result size
risch \(-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}\) \(114\)
derivativedivides \(\frac {2 a \left (-\frac {\left (a -\sqrt {\left (a +b \right ) b}+b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {\left (a +b \right ) b}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{d}\) \(160\)
default \(\frac {2 a \left (-\frac {\left (a -\sqrt {\left (a +b \right ) b}+b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {\left (a +b \right ) b}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{d}\) \(160\)

[In]

int(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(-a*b)^(1/2)/d*ln(exp(2*d*x+2*c)+(a*(-a*b)^(1/2)-b*(-a*b)^(1/2)-2*a*b)/(a+b)/(-a*b)^(1/2))+1/2/(-a*b)^(1/
2)/d*ln(exp(2*d*x+2*c)+(a*(-a*b)^(1/2)-b*(-a*b)^(1/2)+2*a*b)/(a+b)/(-a*b)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 75 vs. \(2 (24) = 48\).

Time = 0.29 (sec) , antiderivative size = 455, normalized size of antiderivative = 14.22 \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\left [-\frac {\sqrt {-a b} \log \left (\frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a^{2} + 2 \, a b + b^{2}\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{2} + a^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + a^{2} - 6 \, a b + b^{2} + 4 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{3} + {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {-a b}}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right )}{2 \, a b d}, \frac {\sqrt {a b} \arctan \left (\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {a b}}{2 \, a b}\right )}{a b d}\right ] \]

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-a*b)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^
3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x +
c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*c
osh(d*x + c))*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sin
h(d*x + c)^2 + a - b)*sqrt(-a*b))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)
*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a +
 b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b))/(a*b*d), sqrt(a*b)*arctan(1/2*((a + b)*co
sh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(a*b)/(a*b))/(a*b
*d)]

Sympy [F]

\[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \]

[In]

integrate(sech(d*x+c)**2/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)**2/(a + b*tanh(c + d*x)**2), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.12 \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {\arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} d} \]

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

-arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*d)

Giac [F]

\[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )^{2}}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 2.06 (sec) , antiderivative size = 81, normalized size of antiderivative = 2.53 \[ \int \frac {\text {sech}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\mathrm {atan}\left (\frac {a\,\sqrt {a\,b\,d^2}-b\,\sqrt {a\,b\,d^2}+a\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\sqrt {a\,b\,d^2}+b\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\sqrt {a\,b\,d^2}}{2\,a\,b\,d}\right )}{\sqrt {a\,b\,d^2}} \]

[In]

int(1/(cosh(c + d*x)^2*(a + b*tanh(c + d*x)^2)),x)

[Out]

atan((a*(a*b*d^2)^(1/2) - b*(a*b*d^2)^(1/2) + a*exp(2*c)*exp(2*d*x)*(a*b*d^2)^(1/2) + b*exp(2*c)*exp(2*d*x)*(a
*b*d^2)^(1/2))/(2*a*b*d))/(a*b*d^2)^(1/2)